
www.manaraa.com

Data storage interpretationof labeled modal logic�Sergei Art�emovySteklov Mathematical Institute,Vavilova str. 42,Moscow, 117966 RUSSIA.e-mail: sergei@artemov.mian.su Vladimir KrupskizDepartment of MathematicsMoscow State UniversityMoscow 119899, RUSSIAemail: krupski@sci.math.msu.suFebruary 10, 1995AbstractWe introduce reference structures { a basic mathematical model of a dataorganization capable to store and utilize information about its addresses. Apropositional labeled modal language is used as a speci�cation and program-ming language for reference structures; the satis�ability algorithm for modallanguage gives a method of building and optimizing reference structures sat-isfying a given formula. Corresponding labeled modal logics are presented,supplied with cut free axiomatizations, completeness and decidability theoremsare proved. Initialization of typed variables in some programming languages ispresented as an example of a reference structure building.1 IntroductionWe suggest to interpret a labeled modal formula [[m]]A as \memory cell m storessentence A" and to treat propositional variables as names of the cell contents. The�Annals of Pure and Applied Logic, v. 78, pp. 57-71, 1996yThe research described in this publication was made possible in part by Grant No.NFQ000 fromthe International Science Foundation and by Grant No.93-011-16015 of the Russian Foundation forFundamental Research.zPartially supported by the grant No.95-01-00416 of the Russian Foundation for FundamentalResearch. 1

www.manaraa.com

labeled modal language allows to keep control over both uni�cation of names andvalidity of the information stored.All this eventually makes it possible to do some sort of programming of referentialdata structures by means of labeled modal language in the following way.We consider a language with� atomic data constants c1; c2; : : :,� variables m1; m2; : : : for memory cell addresses,� operationbof reading the contents of a cell, operation [[�]](�) for storing informa-tion to a cell, boolean connectives.A formula in this language may be regarded as a speci�cation of a memory con�g-uration which stores data �les c1; c2; : : : together with an information about contentsof other cells, location of �les, etc. The standard completeness and cut eliminationproof of a corresponding logic of refence structures in fact gives an algorithm whichveri�es the uni�ability of names and semantical correctness of this speci�cation andin a positive case provides a data allocation table in abstract addresses.The compiling problem turns out to be NP -complete. The corresponding algo-rithm suggested in the current paper is a hybrid of the uni�cation and some sort ofboolean satis�ability procedures.The restriction of the underlying objects to sentences (with validity relation onthem) does not lead to a loss of generality for our purposes: if a proper data cioriginally represents a number N , we assume that ci is the sentence \this is a numberN"; the same treatment may be given to other sorts of proper information: terms,names, addresses, etc.The general de�nition of a reference structure covers not only a wide class of com-puter data organizations, but also cross-references with built in reference assignmentsin formal languages, the system of proofs and theorems in a formal theory, etc. How-ever in the current paper we restict this general de�nition to pure reference structuresclosely oriented to the computer data bases. Since there will be no others here wewill use a general name reference structures for the pure ones.2 Reference Structures2.1 De�nition. The language L(M;C) of a reference structure depends on two setsM and C and is de�ned as follows. Let C = fc1; c2; : : : ;>g be a set of data constants,2

www.manaraa.com

which will represent a proper information to be stored in a reference structure. Letalso M = f1; 2; : : :g be a set of memory cells. The language of a reference structurecontains storage operators [[1]](�); [[2]](�); : : :, one for each memory cell, together withusual boolean connectives f^;_;:;>g. For any cell m 2 M there is a referencevariable vm, vm � cm for short. One should not be mislead by the notation: b1; b2 : : :are indeed variables, not constants, since the reading function corresponding to b willitself be a parameter of a reference structure. We denote by V the set of all referencevariables. The set of formulas Fm(M;C) is the least set such thatC; V � Fm(M;C),if m 2M and A 2 Fm(M;C), then [[m]]A 2 Fm(M;C),if A;B 2 Fm(M;C), then (A ^B); (A _ B); (A! B); (:A) 2 Fm(M;C).2.2 De�nition. A formula is ground if it contains no reference variables, underSt(M;C) we mean the set of all ground formulas of the language L(M;C). A sub-stitution is a partial mapping � : V �! Fm(M;C); � is a solution of an equationA = B, for A;B 2 Fm(M;C), if A� = B�. Substitution � is a solution of a relationR �M � Fm(M;C) if � is a solution of cm = A for every (m;A) 2 R. A substitution� : V �! St(M;C) is called ground substitution. We assume that all atom constantsare valid. Any ground solution � of a relation R � M � Fm(M;C) naturally de�nesa validity relation j=R;� on all ground formulas:j=R;� > and j=R;� c for all c 2 C,j=R;� [[m]]A , (m 2 Dom R and cm� = A);j=R;� respects boolean connectives.A ground solution � of a relation R is valid on N �M , if j=R;� bn� for all n 2 N . Astorage table is a functional relation R � M � Fm(M;C) between memory cells andformulas.2.3 De�nition. A reference structure is a storage table which has a ground solution� valid on Dom R, i.e. a storage table with all stored sentences to be true.2.4 Comment. The relation R is a system of assigning memory cells to formulasfrom Fm(M;C) which is consistent from both combinatorial and semantical sides.3

www.manaraa.com

The cells which are not in Dom R are called empty. The reserve of empty cells isboth realistic and technically convenient. If R has a ground solution satisfying thede�nition of a reference structure above, then R has such a solution which is total onV . Without loss of generality we assume that � is already total and call it a readingprocedure of R. A reading procedure provides a ground picture of the cell contentswhere all the references are already given their \real" meaning in terms of properinformation and storage connections. On empty cells a reading procedure returnssome ground sentences which may be regarded as sort of \error messages".2.5 De�nition. Let R be a reference structure and � { its reading procedure.With a pair < = (R; �) we associate a validity relation j= de�ned on all formulas fromFm(M;C): < j= A , j=R;� A�:It is easy to see that j= is an extention of the \old" validity relation j=R;� fromSt(M;C) to Fm(M;C). Also, < j= A for all A 2 Val R.2.6 Lemma. < j= [[m]]A) < j= A:Proof follows immediately from the de�nitions.2.7 Lemma. The following are equivalent1. m is nonempty,2. < j= [[m]]B for some formula B,3. < j= [[m]]cm.Proof. 3.) 2.) 1. are trivial. We prove the remaining 1.) 3. If m 2 Dom R,then (m;A) 2 R for some formula A cm� = A�, hence j=R;� [[m]]A� and < j= [[m]]A.We can see now how the decision to have a reserve of empty cells increases theexpressive power of the reference structures language. For example, the fact thatm 2M is not empty can now be expressed by a formula [[m]]cm, which we will denotefm and will use as a natural sentence format pointer. The meaning of fm as a pointeris assumed to be built in the search algorithm. Note that the length of fm can beeasily made of the order of the length of m and cm. i.e. "very small".4

www.manaraa.com

2.8 Example. A list of c1; c2; : : : ; cn may be described as the ground reference struc-ture R over M = f1; 2; : : : ; n+ 1g and C = fc1; c2; :::; cng asR = f(1; '1); : : : ; (n; 'n); (n+ 1;>)gfor '1 = A1 ^ [[2]]'2; '2 = A2 ^ [[3]]'3; : : : ; 'n = An ^ [[n + 1]]>. Here > works as amarker of the end node. The list can be represented by the formula [[1]]'1).It does not mean, however that we intend to store the entire list in one cell 1. Wewill see now how a regular reference structure "list" looks like:bR = f(i; A1 ^ e2); (2; A2 ^ e3); : : : ; (n;An ^ gn + 1); (n+ 1;>)g:The entire reference structure can now be represented by the formula[[1]](A1 ^ e2))^ : : :^ [[n]](An ^ gn+ 1)^ [[n + 1]]>:The main question here is how to decide whether there exists a reference structuresatisfying given storage description, and to construct one if it exists. A �nite equationsystem alone can be solved in linear time (cf.[4], [5]). The semantic componenthowever spoils the picture: the problem immediately becomes at least NP -hard,since it naturally includes the satis�ability problem for the classical propositionallogic. Below we'll show that it is NP -complete.3 Logic of reference structuresUsually the Uni�cation Algorithm deals with �nite systems of \unconditional" equal-ities of the form A = B. Fast algorithms of solving such systems were suggested in[4] (cf. also [6]). We assume that formulas are presented as directed acyclic grapheswith shared variables (dags) which allow lineartime uni�cation ([4]).We will also be interested in the \conditional" equalities of the form(Ui = Vi; i 2 ISj = Wj) Uj = Vj; j 2 J (1)For a convenience we consider some deterministic variant of the Uni�cation Algo-rithm by �xing an order of the equations for this algorithm to choose. The suitablemodi�cation U of the uni�cation algorithm for \conditional" equalities works as fol-lows. Using the standard uni�cation algorithm solve the unconditional part of the5

www.manaraa.com

system and calculate its m.g.u. �. Then pick a \conditional" equality and check theconditions Sj� = Wj�:If the condition fails, then take the next \conditional" equality. If the conditions areful�lled, add the succedent equality to the unconditional part and solve the systemagain. The process terminates when the checking procedure fails to add new equalitiesor the uni�cation algorithm fails to solve a current unconditional part of the system.The standard argument proves that this modi�cation gives the most general uni�er(m.g.u.) of the system with \conditional" equations. The standard m.g.u. of the setof equations (1) is the m.g.u. obtained by U.3.1 Lemma. (cf. [2]). Let � be the standard m.g.u. of a \conditional" system (1).Then1. all variables occurring in � are from (1),2. Dom(�) \ Val(�) = ;,3. � is idempotent, i.e. � � � = �,4. for every solution � of (1) there exists a substitution � s.t. � = � � � .Consider a labeled modal language bL which containsmemory cell variables CVar = fm1; m2; m3; : : :g,reference variables RVar = fdm1;dm2;dm3 : : :g,sentence constants Con = fc1; c2; c3; : : :g, the truth constant >and is closed under boolean connectives and labeled modalities [[mi]](�); i = 1; 2; : : :(unary operators).The di�erence between bL and L(M;C) is that the cell addresses in bL are variables,unlike L(M;C), where they are constants.3.2 De�nition. Let M be a memory set and C a data constants set. An interpre-tation of bL to Fm(M;C) is a mapping � of CVar into M and Con into C which isinjective on Con. The interpretation � has a canonical extension to all bL fromulas:>� = >,for bp 2 RVar bp � = cp�,� commutes with the boolean connectives,6

www.manaraa.com

([[p]]A)� is [[p�]]A�.We say that a bL formula F is valid in a reference structure < = (R; �) under interpre-tation �, if < j= F �. A reference structure < is a model of a given set � of bL formulasunder given interpretation � if < j= A� for each A 2 �.The language bL may now be regarded as a programming language for referencestructures. Here a program is a modal formula A describing the properties of areference structure <. Satis�ability of A means the existence of a desired referencestructure. The satis�ability algorithm for the language bL naturally arises from thecompleteness proof of the calculus LR (below).A substitution on the bL formulas works simultaneously in two formats: cells andsentences. No special restrictions on substitutions are imposed. For example, anreference variable can be substituted by any bL formula.Without a loss of generality we restrict the set of cell variables CVar to its �nitefragment fm1; m2; : : : ; mrg (corresponding restriction should be put on the set ofreference variables). Also we assume that Con is �nite.3.3 De�nition. Under �A;B;p we mean the standard m.g.u. of the set of equationsbp = A = Bmi = mj) cmi = cmj: (2)Here the \conditional" part is standard with mi; mj range over all cell variablesoccurring in \unconditional" part bp = A = B. Note that �A;B;p is an idempotent andacts on the variables of all sorts, mi�A;B;p is a cell variable and cmi�A;B;p is a formulafrom bL.3.4 De�nition. We de�ne C = D (mod bp = A = B) to stand for\C� � D� for every solution � of (2)".Apparently, if the system (2) has no solution, then C = D (mod bp = A = B)holds for all C and D. If the system (2) has a solution thenC = D (mod bp = A = B) , C�A;B;p � D�A;B;p:So, the relation C = D (mod bp = A = B) is decidable.Axioms of LR: 7

www.manaraa.com

(A1) The classical propositional axioms together with constants fc1; c2; c3; : : : ;>gadopted as new axioms,(A2) [[p]]A! A,(A3) [[p]]A ^ [[p]]B ! (C ! D) if C = D (mod bp = A = B).Rule modus ponens.Axiom (A3) is similar to the uni�cation axiom from [1] and the functionality axiomfrom [3].3.5 Example. The following is provable in LR:� :([[p1]]A1 ^ : : : ^ [[pn]]An) if the system8>><>>: bpk = Ak (k = 1; : : : ; n);p = q) bp = bq for all cell variables p; qoccurring in [[p1]]A1 ^ : : : ^ [[pn]]An (3)is not uni�able.� [[p1]]A1 ^ : : : ^ [[pn]]An ! (B $ C) if B� = C� for the most general uni�er �satisfying the condition (3).
4 Completeness theorem4.1 Lemma. For any modal formula F if LR ` F , then F � is valid under everyinterpretation � in reference structures.Proof. A straightforward induction on the proof of F .4.2 Theorem. For any formula F 2 bL if LR 6` F , then there exists a �nite referencestructure < and interpretation � of the language bL into < such that < 6j= F �.8

www.manaraa.com

Now we introduce a Gentzen style formulation of LR and prove simultaneouslythe completeness theorem along with the cut elimination property of the relevantGentzen style system.In what follows a sequent is a formal expression of the form � � �, where � and� are �nite sets of bL formulas.4.3 De�nition. LRG is the following sequent calculus:Axioms:� � � � such that � \� 6= ; or > 2 � or c 2 � for some c 2 Con.� � � � such that � � � , where � = f[[pi]]Ai j i = 1; 2; : : :g and the system (3)for � is not uni�able.Rules:� Classical rules for ^,: and structural rules together with the cut-rule.� A;� � �[[p]]A;� � �� �; B�;� � ��; B;� � � , �;� � B�;��;� � B;� , where � = f[[pi]]Ai j i = 1; 2; : : :g and �is the most general uni�er of (3) for � and obtained as a result of the standarduni�cation algorithm U.4.4 De�nition. LR�G is the system LRG without the cut rule.The following lemma claims the soundness of LRG w.r.t. LR.4.5 Lemma. If LRG ` � � �, then LR ` V�! W�. 1Proof. Standard induction on the complexity of the proof of � � � in LRG.4.6 De�nition. Saturation process is the nondeterministic procedure constructinga saturation tree labeled by pairs (sequent, substitution) as follows:1For
 = fA1; A2; : : :g V
 = A1 ^A2 ^ : : :, and W
 = A1 _ A2 _ : : :.9

www.manaraa.com

Given the sequent �0 � �0 put�00 = �0 [f>g [f the set of all constants, occurring in �0 � �0g;and label the root by (�00 � �0; �), where � is an empty substitution, andtry repeatedly to apply the saturation rules while they add to the treesome node with the label sequent di�erent from the label of its parent.The rules can be applied to an arbitrary leaf of the current part of the treeif its label sequent � � � is not an axiom of LRG; in the formulations ofthe rules we suppose that such a leaf (a current node) is already chosenand labeled by (� � �; �).Saturation rules:Rule 1. If A ^ B 2 �, then add to the tree a son of the current nodelabeled by (� [fA;Bg � �; �).Rule 2. If A^B 2 �, then add to the tree two sons of the current nodelabeled by (� � � [fAg; �) and (� � � [fBg; �).Rule 3. If :A 2 � (:A 2 �), then add to the tree a son of the currentnode labeled by (� � � [fAg; �) (correspondingly, (� [fAg ��; �)).Rule 4. If 2pA 2 �, then add to the tree a son of the current nodelabeled by (� [fAg � �; �).Rule 5. Call the uni�cation algorithmU to get the most general solution�0 of the system (3) where f[[pi]]Ai; i = 1; :::; ng is the list of allformulas of the form [[pi]]A from �. Add to the tree a son of thecurrent node labeled by (��0 � ��0; ��0).4.7 Lemma. If (� � �; �) is a label in a saturation tree, then for any variable voccurring in � � � we have v� = v.Proof. First of all we notice that none of the variables from Dom(�) occurs in Val(�)since � is a product of m.g.u.'s each enjoying the properties of lemma 3.1. Consider astep 5. Any variable v occurring in � � � is neither from Dom(�) nor from Dom(�0).Thus v is a �xed point of both � and �0. 10

www.manaraa.com

4.8 Corollary. For any label (� � �; �) of the saturation tree any subformula A of� � � we have A� = A, (hence �� = � and �� = �).4.9 Lemma. �2 = �.Proof. Dom(�) \ Val(�) = ;.4.10 Lemma. The saturation process terminates.Proof. Rules 1-4 do not change the subformulas of the sequent so they can notbe applied in�nitely many times. Any application of the rule 5 reduces the set ofvariables occurring in � � �, thus any path in a saturation tree is �nite and the treeitself is �nite.Therefore the saturation process always terminates and computes some saturationtree of a given sequent. We say that the saturation process succeeds if it produces asaturation tree with all leafs labeled with axioms; otherwise it fails.4.11 Lemma. If the saturation process on a given sequent succeeds, then the sequentis provable in LR�G.Proof. A saturation tree with all leafs labeled by axioms is in fact the tree-likederivation in LR�G of the sequent labeling the root.Suppose the saturation process fails on a sequent �0 � �0. Then it produces aleaf of the saturation tree labeled by (� � �; �) such that� �0� � �;�0� � �, � \� = ;; > 2 �; Con � �;� if (A ^ B) 2 �, then A 2 � and B 2 �;� if (A ^ B) 2 �, then A 2 � or B 2 �;� if :A 2 �, then A 2 �; if:A 2 �, then A 2 �;� if [[p]]A 2 �, then A 2 �;� � is functional: [[p]]A 2 � and [[p]]B 2 � imply A = B.11

www.manaraa.com

Now we are ready to de�ne a reference structure < and an interpretation � whichwill eventually become a countermodel for �0 � �0.Let M be the set of cell variables occurring in �0 � �0, which are �xed points of�, i.e. M = fm 2 CVar j m� = mg:In particular, all cell variables occurring in � � � are in M . Let the set of dataconstants C be Con [D, where D is a set of "new constants" corresponding to �xedpoint reference variables: D = fd(cm) j cm� = cmg:In particular, every reference variable cm occurring in � � � received a correspondingconstant d(cm).It is clear, that the �xed point reference variables remain sort of parameters of thefuture reference structure and they can be evaluated in either way. However the rulesof the game require them to become ground sentences. The easiest way to ensure itis to introduce special new constants to evaluate these variables.Now the set of Fm(M;C) is de�ned.Put for any �xed point reference variable cm�(cm) = (d(cm); if cm 2 �;:d(cm); otherwise,Now for any subformula A of � � � we de�ne a ground A� 2 Fm(M;C): c�i = ci,>� = >, cm� = �(cm), ([[m]]B)� = [[m]]B�. Note that the translation � is injectivesince no constants d(cm) are uni�ed for di�erent m 2 M . So, we will write B� insteadof B� understanding � as the substitution fdm1=�(dm1);dm2=�(dm2) : : :g. Put� = ��;and let R = f(m;A) j [[m]]A 2 �g:We have to establish now that < = (R; �) is a reference structure. First, � is clearly aground substitution. Then it is easy to see that � uni�es R. Indeed, let (m;A) 2 R,then [[m]]A 2 �, and, by the saturation construction cm� = A�. Thuscm� = cm�� = A�� = A�:12

www.manaraa.com

4.12 Lemma. A 2 �) j=R;� A�;A 2 �) 6j=R;� A�:Proof. Induction on A. The cases A is a constant ci;> as well as the case A is anreference variable cm are covered by the de�nitions of � � � and �. The cases ofboolean connectives are trivial by the construction of the saturated sequent � � �.Now [[m]]B 2 �) (m;B) 2 R) cm� = B�) j=R;� [[m]]B�:Let now [[m]]B 2 �. If m 62 Dom(R), then clearly 6j=R;� [[m]]B�. Let now m 2Dom(R), i.e. [[m]]B0 2 � for some B0, then cm� = B0�. If B� = B0�, then B� = B0�,since � is injective, and thus B = B� = B0� = B0, which is impossible because� \� = ;.4.13 Lemma. < = (R; �) is a reference structure.Proof. It only remains to check that cm� is valid on Dom(R). Let m 2 Dom(R),then (m;A�) 2 R� and there exists some B such that [[m]]B 2 � and B� = A�. Then,by the saturation property, B 2 �, thus, by lemma 4.12 j=R;� B�, i.e. j=R;� A�.Now we de�ne an interpretation � by m�i = mi�, and thus A� = A� for any bLformula A. Note that A� is simultaneously a formula of the reference structure <.It is almost trivial now that < 6j= (V�0 ! W�0)�. Indeed, if A 2 �0, then A� 2 �,and < j= A��, by lemma 4.12, and < j= A�. Similarly, if A 2 �0, then < 6j= A�.Thus we have established the following: for any sequent � � � in the language bLLR�G 6` � � �) < 6j= (^�!_�)�) LR 6` ^�! _�) LRG 6` � � �;which together with the trivialLRG 6` � � �) LR�G 6` � � �gives4.14 Corollary. (Cut elimination for LRG) LR�G = LRG13

www.manaraa.com

4.15 Corollary. LRG is an adequate Gentzen style formulation of LR.4.16 Corollary. LR is decidable.Let us complete the proof of Theorem 4.2. Fix a formula F satisfying the condi-tions of the Theorem 4.2. Put �0 = ; and �0 = fFg. Since LR�G 6` �0 � �0 thesaturation process on the sequent �0 � �0 fails, and there is a reference structure <such that < 6j= V�0 ! W�0, i.e. < 6j= F .A lazy inspection of the completeness proof above demonstrates that the size ofa countermodel (in a dags form) of a given bL formula A can be made less than cl4,where l is the length of A, and c �xed.Also, on the basis of lineartime uni�cation algorithms from [4], [6] one can easilyproof the following time complexity bounds for some natural problems in referencestructures.4.17 Theorem.1. The problem "whether < = (R; �) is a reference structure" is polytime.2. The satis�ability problem for the language bL is NP -complete.5 Reference structures building and optimization.The language bL can now be considered as a programming language for designingreference structures with reading procedures. A program here is a labeled modalformula P describing the properties of some reference structure < . The satis�abilityalgorithm extracted from the proofs of the Theorem 4.2 checks whether P is satis�ableand constructs a �nite model of P , which is a desired reference structure.We reduce the problem of constructing a model of P to the problem of construct-ing a countermodel for the sequent P �. The saturation algorithm checks whetherthis sequent is provable and transforms it into the sequent � � � with saturationproperties. If saturation succeeds, then LR ` :P , and thus there is no referencestructure satisfying the condition P . If saturation fails, then we have a quadratic ofthe size of P reference structure < and an interpretation � such that P � is valid in <.Let us consider an example of a problem \initialization of typed variables", whichcomes from some common programming languages like PASCAL, C, etc.14

www.manaraa.com

5.1 Example. (Initialization of typed variables). We consider the following variantof commonly used typing system. Let T be a �nite set of primitive types with domainsD� , � 2 T (the domains are supposed to be decidable but not necessary disjoint).The set of all types Type is constructed from T by the rules:Rule : Domain :(Structure) �i 2 Type; 1 � i � nf�1; : : : ; �ng 2 Type D1 � : : :�Dn(Union) �i 2 Type; 1 � i � nf�1; : : : ; �ng 2 Type D1 [: : : [Dn(Subset) �i 2 Type; ai 2 D�i; 1 � i � nSet of(a1j�1; : : : ; anj�n) 2 Type Pfa1; : : : ; angThe initialization problem: given a type � 2 Type and an object a 2 S�2TypeD�we have to check whether a 2 D� and, if it is, to build a data structure which stores aas an object of type � together with some address which is the value of correspondingpointer.The basic elements to construct a reference structure from are constants for objectsof primitive types. A reference structure is supposed to represent the type structurein a way that provides a direct access to any subobject of a given object.With the pair (�; a) we associate a formula �(�; a) 2 bL and a cell variable p in it:(Primitive type): � 2 T and a 2 D� . Then�(�; a) = [[p]]c�;a;where c�;a is a data constant.(Structure): � = f�1; :::; �ng and a = (a1; :::; an). Then�(�; a) = (n̂i=1�i) ^ [[p]](ep1 ^ : : : ^ epn);where �i is a variant of �(�i; ai) obtained from it by renaming the variables ofthe form q; bq (so �i and �j for i 6= j do not have common variables) and pi isthe associated cell variable. 15

www.manaraa.com

(Union): � = f�1; : : : ; �ng. Then �(�; a) = (n_i=1�0i) ^ [[p]]eq;where �0i = �i[q=pi], q is a new variable and �i is obtained from �(�i; a) in thesame way as for (Structure).(Subset): � = Set of(a1j�1; : : : ; anj�n) and a � fa1; : : : ; ang. Then�(�; a) = (âi 62a:epi) ^ (âi2a�i) ^ [[p]](:[[p0]]> $ ep1 _ : : : _ epn);where p0 is a new cell variable and �i, pi, (1 � i � n) are the same as for(Structure). Here the formula [[p0]]> indicates whether the object a is empty.(Type mismatch): In all other cases �(�; a) = [[p]]?.In all cases the associated cell variable is p.It is easy to see that �(�; a) is satis�able i� a 2 D� . The satis�ability algorithmtransfers it into a data structure implementing the initializationv := afor a variable v of type � . The interpretation p� of the associated cell variable isan address su�cient to restore all the information about the value of v as an objectof type � . It is a natural pointer value. Speci�c features of the implementation arereected in �(�; a); it plays a role of a program for building this data structure. Theexamples of resulting data structures are shown on Fig.1.Note that we have chosen the variant of the program �(�; a) where all possible sim-pli�cations are already done. This job can be left to the satis�ability algorithm too.For example in the case of (Structure) when � = f�1; : : : ; �ng and a = (a1; : : : ; am)we may take the following variant:[[p]](ep1 ^ : : : ^ epn) ^ (m̂i=1�i) ^ [[p]](ep1 ^ : : : ^ epm):It is equivalent to �(�; a) and the algorithm transfers it into the same data structure.In order to construct a reference structure which uses only one cell instead of manycontaining the same record, i.e. to construct a reference structure with a functional16

www.manaraa.com

Structure� = f�1; �2g; a = (a1; a2):[[p1]]a1 ^ [[p2]]a2 ^ [[p]](fp1 ^ fp2)p : ep1 ^ ep2???y ???yp1 :a1 p2 :a2
Union� = f�1; �2g; a 2 D�1 [D�2 :([[q]]a1 _ [[q]]a2) ^ [[p]]eqp : eq???yq :aSubset� = Set of(a1 : �1; a2 : �2; a3 : �3); a = fa2; a3g::fp1 ^ [[p2]]a2 ^ [[p3]]a3 ^ [[p]](:[[p0]]> $ fp1 _ fp2 _ fp3)p : :[[p0]]> $ ep1 _ ep2 _ ep3???y ???y ???y ???yp0 :� p1 : 2 p2 :a2 p3 :a3� = Set of(a1 : �1; a2 : �2; a3 : �3); a = ;::fp1 ^ :fp2 ^ :fp3 ^ [[p]](:[[p0]]> $ fp1 _ fp2 _ fp3)p : :[[p0]]> $ ep1 _ ep2 _ ep3???y ???y ???y ???yp0 :> p1 : 2 p2 : 2 p3 : 2Figure 1:17

www.manaraa.com

conversion of the ground storage relation (R�)�1 or, even more, with invertible readingprocedure �, we introduce the logics LR1 and LR1�1. The logic LR1 is LR + (A4)where (A4) is the following axiom scheme:(A4) [[p]]A ^ [[p0]]A ! (B $ B[p0=p]):LR1�1 is the modi�cation of LR where the \conditional" equalityp = q) bp = bqis replaced by p = q , bp = bq:5.2 Theorem. For any labeled modal formula F1. LR1 ` F i� F � is valid for all interpretations � in �nite reference structureswith functional relation (R�)�1;2. LR1�1 ` A i� A� is valid for all interpretations � in �nite reference structureswith invertible reading procedure �.Proof. Similar to the proof of the completeness Theorem 4.2.The logics LR1 and LR1�1 are also decidable. The satis�ability algorithms fromthe completeness proofs for these logics can be used in the same way as that for LRto construct reference structures without double stored sentences. The complexitybounds from Theorem 4.17 are also preserved.References[1] S. Art�emov and T. Strassen. Functionality in the Basic Logic of Proofs. Technicalreport IAM 93-004, Universit�at Bern, January, 1993.[2] J.-L.Lasser, M.J.Maher and K.Marriot. Uni�cation revisited. In: \Foundations ofDeductive Databases and Logic Programming" J.Minker (Ed.), Morgan Kau�-man, pp.587-626, 1987.[3] S. Art�emov. Logic of proofs. Annals of Pure and Applied Logic, v.67, No. 1, pp.29-59, 1994. 18

www.manaraa.com

[4] M.S.Paterson , M.N.Wegman. Linear uni�cation. J.Comput.Syst.Sci. 16, 2, 158-167, 1978[5] A.Martelli, U.Montanary. An e�cient uni�cation algorithm. ACM Transactionson Programming Languages and Systems 4, 258-282, 1982.[6] F.Baader and J.H.Siekmann. Uni�cation Theory. In: \Handbook of Logic inArti�cial Intelligence and Logic Programming" D.M.Gabbay, C.J.Hogger, andJ.A.Robinson (Ed.), Oxford University Press, 1994.

19

