Data storage interpretation
of labeled modal logic*

Sergei Artémovt Vladimir Krupskit
Steklov Mathematical Institute, Department of Mathematics
Vavilova str. 42, Moscow State University
Moscow, 117966 RUSSIA. Moscow 119899, RUSSIA
e-mail: sergei@artemov.mian.su email: krupski@sci.math.msu.su

February 10, 1995

Abstract

We introduce reference structures a basic mathematical model of a data
organization capable to store and utilize information about its addresses. A
propositional labeled modal language is used as a specification and program-
ming language for reference structures; the satisfiability algorithm for modal
language gives a method of building and optimizing reference structures sat-
isfying a given formula. Corresponding labeled modal logics are presented,
supplied with cut free axiomatizations, completeness and decidability theorems
are proved. Initialization of typed variables in some programming languages is
presented as an example of a reference structure building.

1 Introduction

We suggest to interpret a labeled modal formula [m]A as “memory cell m stores
sentence A” and to treat propositional variables as names of the cell contents. The

*Annals of Pure and Applied Logic, v. 78, pp. 57-71, 1996

tThe research described in this publication was made possible in part by Grant No.NFQO000 from
the International Science Foundation and by Grant No.93-011-16015 of the Russian Foundation for
Fundamental Research.

tPartially supported by the grant No0.95-01-00416 of the Russian Foundation for Fundamental
Research.

www.manaraa.com

labeled modal language allows to keep control over both unification of names and
validity of the information stored.

All this eventually makes it possible to do some sort of programming of referential
data structures by means of labeled modal language in the following way.

We consider a language with

e atomic data constants ¢y, co, .. .,
e variables my, mo, ... for memory cell addresses,

e operation”of reading the contents of a cell, operation [-]() for storing informa-
tion to a cell, boolean connectives.

A formula in this language may be regarded as a specification of a memory config-
uration which stores data files ¢y, ¢, ... together with an information about contents
of other cells, location of files, etc. The standard completeness and cut elimination
proof of a corresponding logic of refence structures in fact gives an algorithm which
verifies the unifiability of names and semantical correctness of this specification and
in a positive case provides a data allocation table in abstract addresses.

The compiling problem turns out to be NP-complete. The corresponding algo-
rithm suggested in the current paper is a hybrid of the unification and some sort of
boolean satisfiability procedures.

The restriction of the underlying objects to sentences (with walidity relation on
them) does not lead to a loss of generality for our purposes: if a proper data ¢;
originally represents a number N, we assume that c; is the sentence “this is a number
N7 the same treatment may be given to other sorts of proper information: terms,
names, addresses, etc.

The general definition of a reference structure covers not only a wide class of com-
puter data organizations, but also cross-references with built in reference assignments
in formal languages, the system of proofs and theorems in a formal theory, etc. How-
ever in the current paper we restict this general definition to pure reference structures
closely oriented to the computer data bases. Since there will be no others here we
will use a general name reference structures for the pure ones.

2 Reference Structures

2.1 Definition. The language L£L(M, C) of a reference structure depends on two sets
M and C and is defined as follows. Let C' = {¢q,¢o,..., T} be a set of data constants,

www.manaraa.com

which will represent a proper information to be stored in a reference structure. Let
also M = {1,2,...} be a set of memory cells. The language of a reference structure
contains storage operators [1](-), [2](), ..., one for each memory cell, together with
usual boolean connectives {A,V,—, T}. For any cell m € M there is a reference
variable v,,, v, = m for short. One should not be mislead by the notation: 1,2...
are indeed variables, not constants, since the reading function corresponding to =~ will
itself be a parameter of a reference structure. We denote by V' the set of all reference
variables. The set of formulas Fm(M, C) is the least set such that

C,V C Fin(M,C),
if me M and A € Fm(M,C), then [m]A € Fm(M,C),
if A,B € Fm(M,C), then (AA B),(AV B),(A — B),(=A4) € Fm(M, C).

2.2 Definition. A formula is ground if it contains no reference variables, under
St(M,C) we mean the set of all ground formulas of the language £(M,C). A sub-
stitution is a partial mapping 6 : V. — Fm(M,C); 6 is a solution of an equation
A =B, for A,B € Fm(M,C), if A9 = Bf. Substitution # is a solution of a relation
R C M x Fm(M,C) if 6 is a solution of m = A for every (m, A) € R. A substitution
0:V — St(M,C) is called ground substitution. We assume that all atom constants
are valid. Any ground solution 6 of a relation R C M x Fm(M,C') naturally defines
a validity relation =g, on all ground formulas:

Fro T and [pyc forall ceC,
Fro ImlA & (m € Dom R and mf = A),
):R,G respects boolean connectives.

A ground solution § of a relation R is valid on N C M, if =, ,nf foralln e N. A
storage table is a functional relation R C M x Fm(M, C) between memory cells and
formulas.

2.3 Definition. A reference structure is a storage table which has a ground solution
6 valid on Dom R, i.e. a storage table with all stored sentences to be true.

2.4 Comment. The relation R is a system of assigning memory cells to formulas
from Fm(M,C) which is consistent from both combinatorial and semantical sides.

www.manaraa.com

The cells which are not in Dom R are called empty. The reserve of empty cells is
both realistic and technically convenient. If R has a ground solution satisfying the
definition of a reference structure above, then R has such a solution which is total on
V. Without loss of generality we assume that 6 is already total and call it a reading
procedure of R. A reading procedure provides a ground picture of the cell contents
where all the references are already given their “real” meaning in terms of proper
information and storage connections. On empty cells a reading procedure returns
some ground sentences which may be regarded as sort of “error messages”.

2.5 Definition. Let R be a reference structure and 6 its reading procedure.
With a pair i = (R, §) we associate a validity relation = defined on all formulas from
Fm(M,C):

REA & 4,40

It is easy to see that |= is an extention of the “old” validity relation |=,, from

St(M,C) to Fim(M,C). Also, R = A for all A € Val R.

2.6 Lemma.

Ri=[m]A = RE A

Proof follows immediately from the definitions.

2.7 Lemma. The following are equivalent

1. m 1s nonempty,
2. R = [m] B for some formula B,

Proof. 3. = 2. = 1. are trivial. We prove the remaining 1. = 3. If m € Dom R,
then (m, A) € R for some formula A mf = A6, hence =, [m]Af and R |= [m]A. =

We can see now how the decision to have a reserve of empty cells increases the
expressive power of the reference structures language. For example, the fact that
m € M is not empty can now be expressed by a formula [m]m, which we will denote
m and will use as a natural sentence format pointer. The meaning of m as a pointer
is assumed to be built in the search algorithm. Note that the length of m can be
easily made of the order of the length of m and m. i.e. ”very small”.

www.manaraa.com

2.8 Example. A listof ¢y, co,. .., ¢, may be described as the ground reference struc-
ture R over M ={1,2,....,n+ 1} and C = {¢y,¢9, ..., ¢, } as

R = {(1,901)a T (na Qpn)a (TL-l- 1’ T)}

for o1 = A1 A [2] 2, w2 = As A[3]ws, -y oo = Ap A[n+1]T. Here T works as a
marker of the end node. The list can be represented by the formula [1]¢1).

It does not mean, however that we intend to store the entire list in one cell 1. We
will see now how a regular reference structure ”list” looks like:

R={(i,A/N2),(2, A3 A3),....(n, Ay An+1),(n+1,T)}.
The entire reference structure can now be represented by the formula

OIA AZ)A - AInl(An AnF 1) An+1]T.

The main question here is how to decide whether there exists a reference structure
satisfying given storage description, and to construct one if it exists. A finite equation
system alone can be solved in linear time (cf.[4], [5]). The semantic component
however spoils the picture: the problem immediately becomes at least NP-hard,
since it naturally includes the satisfiability problem for the classical propositional
logic. Below we’ll show that it is NP-complete.

3 Logic of reference structures

Usually the Unification Algorithm deals with finite systems of “unconditional” equal-
ities of the form A = B. Fast algorithms of solving such systems were suggested in
[4] (cf. also [6]). We assume that formulas are presented as directed acyclic graphes
with shared variables (dags) which allow lineartime unification ([4]).

We will also be interested in the “conditional” equalities of the form

Sj:Wj = Uj:V}, jedJ
For a convenience we consider some deterministic variant of the Unification Algo-
rithm by fixing an order of the equations for this algorithm to choose. The suitable

modification U of the unification algorithm for “conditional” equalities works as fol-
lows. Using the standard unification algorithm solve the unconditional part of the

www.manaraa.com

system and calculate its m.g.u. . Then pick a “conditional” equality and check the
conditions
S]'U = Wj()’.

If the condition fails, then take the next “conditional” equality. If the conditions are
fulfilled, add the succedent equality to the unconditional part and solve the system
again. The process terminates when the checking procedure fails to add new equalities
or the unification algorithm fails to solve a current unconditional part of the system.
The standard argument proves that this modification gives the most general unifier
(m.g.u.) of the system with “conditional” equations. The standard m.g.u. of the set
of equations (1) is the m.g.u. obtained by U.

3.1 Lemma. (cf. [2]). Let o be the standard m.g.u. of a “conditional” system (1).
Then

1. all variables occurring in o are from (1),

2. Dom(o) N Val(o) =0,

3. o is idempotent, i.e. oo =0,

4. for every solution 0 of (1) there exists a substitution T s.t. 0 = o oT.

Consider a labeled modal language L which contains
memory cell variables CVar = {my, mqy, ms, ...},
reference variables RVar = {my, my, m3 ...},

sentence constants Con = {¢1, ¢g, ¢3, ...}, the truth constant T

and is closed under boolean connectives and labeled modalities [m;](-),i = 1,2, ...
(unary operators).

The difference between L and L(M,C) is that the cell addresses in L are variables,
unlike £(M, C), where they are constants.

3.2 Definition. Let M be a memory set and C a data constants set. An interpre-

tation of L to Fm(M,C) is a mapping * of C'Var into M and Con into C which is

injective on Con. The interpretation x has a canonical extension to all L fromulas:
T =T,

forpe RVar p*=p*,

x commutes with the boolean connectives,

www.manaraa.com

([p]A) is [p7]A™.
We say that a L formula F is valid in a reference structure R = (R, #) under interpre-

tation *, if ® = F*. A reference structure R is a model of a given set [of L formulas
under given interpretation x if & = A* for each A € I.

The language L may now be regarded as a programming language for reference
structures. Here a program is a modal formula A describing the properties of a
reference structure R. Satisfiability of A means the existence of a desired reference
structure. The satisfiability algorithm for the language L naturally arises from the
completeness proof of the calculus LR (below).

A substitution on the L formulas works simultaneously in two formats: cells and
sentences. No special restrictions on substitutions are imposed. For example, an
reference variable can be substituted by any L formula.

Without a loss of generality we restrict the set of cell variables C'Var to its finite
fragment {my, my,...,m,} (corresponding restriction should be put on the set of
reference variables). Also we assume that Con is finite.

3.3 Definition. Under o4 p, we mean the standard m.g.u. of the set of equations

p=A=B

ml:m]:>ﬁl:7/n\]

(2)

Here the “conditional” part is standard with m;, m; range over all cell variables
occurring in “unconditional” part p = A = B. Note that o4 g, is an idempotent and
acts on the variables of all sorts, m;o4 5, is a cell variable and m;o4 p, is a formula
from L.

3.4 Definition. We define C =D (mod p = A = B) to stand for
“Co = Do for every solution o of (2)”.

Apparently, if the system (2) has no solution, then C' = D (mod p = A = B)
holds for all C and D. If the system (2) has a solution then

C=D(mod p=A=B) & Coapy=Dosp,.
So, the relation C = D (mod p = A = B) is decidable.

Axioms of LR:

www.manaraa.com

(A1) The classical propositional axioms together with constants {ci, ¢y, ¢3,..., T}
adopted as new axioms,

(A2) [p]A — A,
(A3) [PJAA[P]B — (C — D) if C =D (modp= A= B).

Rule modus ponens.

Axiom (A3) is similar to the unification axiom from [1] and the functionality axiom
from [3].

3.5 Example. The following is provable in LR:
e —([p1]A1 A ... Apa]Arn) if the system

ﬁk:Ak (kzl,,n),

p=q = p=q for all cell variables p, q (3)
occurring in [pi1]Ai1 A .. A [pn]An

is not unifiable.

e [pi]A1 A ... Apn]An — (B < C) if Bo = Co for the most general unifier o
satisfying the condition (3).

4 Completeness theorem

4.1 Lemma. For any modal formula F if LR = F, then F* is valid under every
interpretation * in reference structures.

Proof. A straightforward induction on the proof of F'. [

4.2 Theorem. For any formula F' € L if LR Y/ F, then there exists a finite reference
structure R and interpretation x of the language L into R such that R £~ F*.

www.manharaa.com

Now we introduce a Gentzen style formulation of LR and prove simultaneously
the completeness theorem along with the cut elimination property of the relevant
Gentzen style system.

In what follows a sequent is a formal expression of the form I' D A, where I' and
A are finite sets of L formulas.

4.3 Definition. LR is the following sequent calculus:
Axioms:
e ' DA such that TNA#@or T €A orce A for some ¢ € Con.

e I' D Asuch that = C T', where = = {[p;]A; | i =1,2,...} and the system (3)
for = is not unifiable.

Rules:

e (lassical rules for A,— and structural rules together with the cut-rule.

e ATDA
[p]A,T DA
=, Bo,I' DA =1 > Bo, A
° , DO, D ’ y D) g, , where = = {[[pz]]AZ ‘Z:]_,2’} and o

= B,I'DA =1I'D>BA
is the most general unifier of (3) for = and obtained as a result of the standard
unification algorithm U.

4.4 Definition. LR is the system LR without the cut rule.
The following lemma claims the soundness of LRg w.r.t. LR.

4.5 Lemma. IfLRaFT DA, then LREAT — VA !

Proof. Standard induction on the complexity of the proof of I' D A in LRg. []

4.6 Definition. Saturation process is the nondeterministic procedure constructing
a saturation tree labeled by pairs (sequent, substitution) as follows:

1FOI‘Q:{A1,A27} /\S]:z‘ll/\142/\7 andVQ:A1VA2V

9

www.manharaa.com

Given the sequent I'g D Ay put
'y =Ty U{T}U{ the set of all constants, occurring in 'y D Ag},

and label the root by (I'y D Ay, €), where € is an empty substitution, and
try repeatedly to apply the saturation rules while they add to the tree
some node with the label sequent different from the label of its parent.
The rules can be applied to an arbitrary leaf of the current part of the tree
if its label sequent I' D A is not an axiom of LRq; in the formulations of

the rules we suppose that such a leaf (a current node) is already chosen
and labeled by (I' D A, o).

Saturation rules:

Rule 1. If AA B € T, then add to the tree a son of the current node
labeled by (I'U {A, B} D A, 0).

Rule 2. If AANB € A, then add to the tree two sons of the current node
labeled by (I' D AU{A},0) and (I' D AU {B},0).

Rule 3. If mA € T' (=A € A), then add to the tree a son of the current
node labeled by (I' > A U {A},0) (correspondingly, (I' U {A} D
A, 0)).

Rule 4. If O0,A € I', then add to the tree a son of the current node
labeled by (T U{A} D A, o).

Rule 5. Call the unification algorithm U to get the most general solution
o' of the system (3) where {[p;]A4;,i = 1,...,n} is the list of all
formulas of the form [p;]A from I'. Add to the tree a son of the
current node labeled by (I'o’ D Ad’, 00”).

4.7 Lemma. If (I' D A, 0) is a label in a saturation tree, then for any variable v
occurring in I' O A we have vo = v.

Proof. First of all we notice that none of the variables from Dom(c) occurs in Val(o)
since o is a product of m.g.u.’s each enjoying the properties of lemma 3.1. Consider a
step 5. Any variable v occurring in I' D A is neither from Dom(o) nor from Dom/(o’).
Thus v is a fixed point of both ¢ and o’. [

10

www.manaraa.com

4.8 Corollary. For any label (I' D A, o) of the saturation tree any subformula A of
' D A we have Ao = A, (hence To =T and Ao = A).

4.9 Lemma. o¢?=o0.

Proof. Dom(o) N Val(o) = 0. u

4.10 Lemma. The saturation process terminates.

Proof. Rules 1-4 do not change the subformulas of the sequent so they can not
be applied infinitely many times. Any application of the rule 5 reduces the set of
variables occurring in I' D A, thus any path in a saturation tree is finite and the tree
itself is finite. [

Therefore the saturation process always terminates and computes some saturation
tree of a given sequent. We say that the saturation process succeeds if it produces a
saturation tree with all leafs labeled with axioms; otherwise it fauls.

4.11 Lemma. If the saturation process on a given sequent succeeds, then the sequent
is provable in LR.

Proof. A saturation tree with all leafs labeled by axioms is in fact the tree-like
derivation in LR of the sequent labeling the root.]

Suppose the saturation process fails on a sequent I'y D Ay. Then it produces a
leaf of the saturation tree labeled by (I' D A, o) such that

e o CT Ao CA,TNA=(), TeT, ConCT;
e if (ANB) €Tl',then A€l and B €T
e if (AANB) € A then A€ Aor BeA;

o if “A €I, then A€ A;if—-A € A, then A €T}

o if [p]JA €T, then A € T;

I" is functional: [p]A € T" and [p]|B € T imply A = B.

11

www.manharaa.com

Now we are ready to define a reference structure & and an interpretation * which
will eventually become a countermodel for I'y D A,.

Let M be the set of cell variables occurring in I'g D Ag, which are fixed points of
o, 1.e.
M = {m € CVar | mo = m}.
In particular, all cell variables occurring in I' © A are in M. Let the set of data
constants C' be Con U D, where D is a set of "new constants” corresponding to fixed

point reference variables:
D = {d(m) | mo = m}.

In particular, every reference variable m occurring in I' D A received a corresponding
constant d(m).

It is clear, that the fixed point reference variables remain sort of parameters of the
future reference structure and they can be evaluated in either way. However the rules
of the game require them to become ground sentences. The easiest way to ensure it
is to introduce special new constants to evaluate these variables.

Now the set of Fin(M,C) is defined.

Put for any fixed point reference variable m

)\(7/77\,):{ dim), ifmerT,

—d(m), otherwise,

Now for any subformula A of ' D A we define a ground A* € Fm(M,C): ¢} = ¢;,
T = T, m* = AX(m), ([m]B)* = [m]B*. Note that the translation * is injective
since no constants d(m) are unified for different m € M. So, we will write B\ instead
of B* understanding A as the substitution {m;/\(m1), ma/\(h3) ...} Put

0 = o),

and let
R={(m,A) | [m]AeT}.

We have to establish now that ® = (R,) is a reference structure. First, 6 is clearly a
ground substitution. Then it is easy to see that 6 unifies R. Indeed, let (m, A) € R,
then [m]A € I', and, by the saturation construction mo = Ao. Thus

mb = mo\ = Ao\ = Af.

12

www.manaraa.com

4.12 Lemma.
Ael = ‘:Rﬁ A6,

AeA = g, Al

Proof. Induction on A. The cases A is a constant ¢;, T as well as the case A is an
reference variable m are covered by the definitions of I' D A and 6. The cases of
boolean connectives are trivial by the construction of the saturated sequent I' O A.
Now

[m]Bel = (m,B)€eR = mf=DB0 = =, [m]BI.

Let now [m]B € A. If m ¢ Dom(R), then clearly [~,, [m]Bf. Let now m €
Dom(R), i.e. [m]B' €T for some B', then mf = B'6. If B8 = B'#, then Bo = B'o,
since \ is injective, and thus B = Bo = B'c = B’, which is impossible because
rnA=0.]

4.13 Lemma. R = (R,0) is a reference structure.

Proof. It only remains to check that m#@ is valid on Dom(R). Let m € Dom(R),
then (m, Af) € RO and there exists some B such that [m]B € T' and B = Af. Then,
by the saturation property, B € I', thus, by lemma 4.12):R,G Bo, i.e.):R,G Af. []

Now we define an interpretation x by m; = m;o, and thus A* = Ao for any L
formula A. Note that Ao is simultaneously a formula of the reference structure R.

[t is almost trivial now that ® [~ (ATy — V Ag)*. Indeed, if A € Ty, then Ao € T,
and R = Acf, by lemma 4.12, and R | A*. Similarly, if A € A, then R [~ A*.

Thus we have established the following: for any sequent I' O A in the language L
LRGFTOA = RENT = VA = LREAT = VA = LRGFT DA,
which together with the trivial
LR T DA = LRLFT DA
gives

4.14 Corollary. (Cut elimination for LRg) LR, = LRg

13

www.manaraa.com

4.15 Corollary. LRg is an adequate Gentzen style formulation of LR.

4.16 Corollary. LR is decidable.

Let us complete the proof of Theorem 4.2. Fix a formula F' satisfying the condi-
tions of the Theorem 4.2. Put I'y = () and Ay = {F'}. Since LR I/ 'y D Ay the
saturation process on the sequent I'g D Aq fails, and there is a reference structure R
such that R £ ATy — V Ay, i.e. R EF. [

A lazy inspection of the completeness proof above demonstrates that the size of
a countermodel (in a dags form) of a given L formula A can be made less than cl?,
where [is the length of A, and c fixed.

Also, on the basis of lineartime unification algorithms from [4], [6] one can easily
proof the following time complexity bounds for some natural problems in reference
structures.

4.17 Theorem.

1. The problem "whether R = (R, 0) is a reference structure” is polytime.
2. The satisfiability problem for the language L is NP-complete.

5 Reference structures building and optimization.

The language L can now be considered as a programming language for designing
reference structures with reading procedures. A program here is a labeled modal
formula P describing the properties of some reference structure & . The satisfiability
algorithm extracted from the proofs of the Theorem 4.2 checks whether P is satisfiable
and constructs a finite model of P, which is a desired reference structure.

We reduce the problem of constructing a model of P to the problem of construct-
ing a countermodel for the sequent P D. The saturation algorithm checks whether
this sequent is provable and transforms it into the sequent I' D A with saturation
properties. If saturation succeeds, then LR F =P, and thus there is no reference
structure satisfying the condition P. If saturation fails, then we have a quadratic of
the size of P reference structure R and an interpretation * such that P* is valid in R.

Let us consider an example of a problem “initialization of typed variables”, which
comes from some common programming languages like PASCAL, C, etc.

14

www.manaraa.com

5.1 Example. (Initialization of typed variables). We consider the following variant
of commonly used typing system. Let 1" be a finite set of primitive types with domains
D., 7 € T (the domains are supposed to be decidable but not necessary disjoint).
The set of all types T'ype is constructed from 7T by the rules:

Rule : Domain :

. €Type, 1 <1< n

(Structure) (r .. T € Tupe Dy x...x D,
, €T 1< <
(Union) EIype, LS1Sn D,u...UD,
{m;...;m} € Type
, €T €D, 1<1<
(Subset) i ELYPe, G € Uy T SIED Play,...,an}

Set_of (ay|T,...,a,|m) € Type

The initialization problem: given a type 7 € Type and an object a € U crype D-
we have to check whether a € D, and, if it is, to build a data structure which stores a
as an object of type 7 together with some address which is the value of corresponding
pointer.

The basic elements to construct a reference structure from are constants for objects
of primitive types. A reference structure is supposed to represent the type structure
in a way that provides a direct access to any subobject of a given object.

With the pair (7, a) we associate a formula ®(7,a) € L and a cell variable p in it:

(Primitive type): 7 € T and a € D,. Then

®(r,a) = [plera,

where c;, is a data constant.

(Structure): T ={m,...,7,} and a = (a4, ..., a,). Then

n

®(r,a) = (\ @) Apl(B1 A .. A D),

i=1

where ®; is a variant of ®(7;, a;) obtained from it by renaming the variables of
the form ¢, ¢ (so ®; and ®; for i # j do not have common variables) and p; is
the associated cell variable.

15

www.manharaa.com

(Union): 7 ={m;...;7n}. Then

n

(7, a) = (\/ ;) A [p]d.

=1

where ®, = ®,;[¢/p;], ¢ is a new variable and ®; is obtained from ®(7;,a) in the
same way as for (Structure).

(Subset): T = Set_of (a1|71,...,a,|7) and a C {a4,...,a,}. Then

O(r,a) = (/\ =B:) ACA @) APICIpl T 4 P1V -V Bn),

a;éa a;ca

where pgy is a new cell variable and ®;, p;, (1 < i < n) are the same as for
(Structure). Here the formula [py] T indicates whether the object a is empty.

(Type mismatch): In all other cases ®(7,a) = [p]—.

In all cases the associated cell variable is p.
It is easy to see that ®(7,a) is satisfiable iff @ € D,. The satisfiability algorithm
transfers it into a data structure implementing the initialization

Vi=a

for a variable v of type 7. The interpretation p* of the associated cell variable is
an address sufficient to restore all the information about the value of v as an object
of type 7. It is a natural pointer value. Specific features of the implementation are
reflected in @ (7, a); it plays a role of a program for building this data structure. The
examples of resulting data structures are shown on Fig.1.

Note that we have chosen the variant of the program ® (7, a) where all possible sim-
plifications are already done. This job can be left to the satisfiability algorithm too.
For example in the case of (Structure) when 7 = {r,...,7,} and a = (ay,...,an)
we may take the following variant:

m
[l (1 Ao A D) AN\ @) AT BL A - A D).
i=1
It is equivalent to ®(7,a) and the algorithm transfers it into the same data structure.

In order to construct a reference structure which uses only one cell instead of many
containing the same record, i.e. to construct a reference structure with a functional

16

www.manharaa.com

Structure Union
T:{TI;TZ}; a:(alaa2)- 7—:{7—1;7—2}5 aEDnUDTz'
[pi]ar A [p2]az A [p](p1 A p2) ([ela1 v [q]az) A [Pl

v A] p: 7]

P P2 - q:
ai a2 a

Subset
T = Set_of(a1 s T1,Q9 1 To,Aas3 . T3), a = {ag,ag}.

=1 A [p2]las A [ps]as A [p](=Ipo] T <> p1 V P2 V ps)

p:olplT & p1 vV pp V P3 |
Pbo - p2: b3 :
- O
* P (03] as

T =Set of(ay : 11,0y : 9,03 : 13), a={0.

=p1 A =pa A =ps A [pl(=[po] T < p1 V D2 V p3)

p: ‘ —[p]T < o1V P2 VP

L

p—ol—' p1: U p2 U ps U
Figure 1:
17

www.manharaa.com

conversion of the ground storage relation (R#) ™' or, even more, with invertible reading
procedure 6, we introduce the logics LR, and LR, 1. The logic LR, is LR + (A4)
where (A4) is the following axiom scheme:

(A4) [plA A [P1A — (B < Blp'/p)).

LR, _; is the modification of LR where the “conditional” equality
p=qg=>p=q

is replaced by
p=qgep=gq

5.2 Theorem. For any labeled modal formula F

1. LRy F uff F* is valid for all interpretations x in finite reference structures
with functional relation (RO)™!;

2. LRy 1 A iff A* is valid for all interpretations x in finite reference structures
with invertible reading procedure 6.

Proof. Similar to the proof of the completeness Theorem 4.2. []

The logics LR, and LR, _; are also decidable. The satisfiability algorithms from
the completeness proofs for these logics can be used in the same way as that for LR
to construct reference structures without double stored sentences. The complexity
bounds from Theorem 4.17 are also preserved.

References

[1] S. Artémov and T. Strassen. Functionality in the Basic Logic of Proofs. Technical
report TAM 93-004, Universitiat Bern, January, 1993.

[2] J.-L.Lasser, M.J.Maher and K.Marriot. Unification revisited. In: “Foundations of
Deductive Databases and Logic Programming” J.Minker (Ed.), Morgan Kauff-
man, pp.>87-626, 1987.

[3] S. Artémov. Logic of proofs. Annals of Pure and Applied Logic, v.67, No. 1, pp.
29-59, 1994.

18

www.manharaa.com

[4] M.S.Paterson , M.N.Wegman. Linear unification. .J. Comput.Syst.Sci. 16, 2, 158-
167, 1978

[5] A.Martelli, U.Montanary. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems 4, 258-282, 1982.

[6] F.Baader and J.H.Siekmann. Unification Theory. In: “Handbook of Logic in
Artificial Intelligence and Logic Programming” D.M.Gabbay, C.J.Hogger, and
J.A.Robinson (Ed.), Oxford University Press, 1994.

19

www.manharaa.com

